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The flow of a l o w - p r e s s u r e  p l a s m a  in a MHD channel is  unstable  in a number  of ca ses .  The 
ins tabi l i ty  can be caused  by a cu r r en t  flowing a c r o s s  the magnet ic  field. In this study we 
inves t igate  an unstable ,  turbulent  flow of a r a r e f i e d  p l a s m a  nea r  the "magnet ized  e lec t rodes , "  
r ep re sen t i ng  plane magnet ic  dipoles .  Owing to the growth of m i c r o s c o p i c  turbulence nea r  
the e l ec t rodes ,  the m a x i m u m  densi ty  of the cur ren t  that  is induced in the p l a s m a  is loca l ized  
and turbulent  damping of the incoming flow occu r s .  The energy  of damping goes  into the 
turbulent  heating of the p l a s m a .  Under these  conditions a s t ruc tu re  of the boundary layer  is 
found for  a s t a t ionary  flow. The ch a rac t e r i s t i c  t r a n s v e r s e  d imension of the boundary l ayer  
is cons iderably  l e s s  than the par t ic le  mean  f ree  path; the re fo re ,  such a boundary l aye r  can 
be cal led "col l i s ionles  s." 

In a number  of works  [1-3] in the invest igat ion of the l amina r  flow of a r a r e f i e d  l o w - p r e s s u r e  p l a s m a  
in a MHD channel i t  was shown that  nea r  the e lec t rodes ,  "nondiss ipat ive"  boundary l a y e r s  can form,  the 
d imension of which, in o rde r  of magnitude,  equal the L a r m o r  radius  or  Debye radius  of e lec t rons .  

In such boundary  l aye r s ,  the p l a s m a  is co l l i s ion less  and energy  is  not ex t rac ted .  

In the boundary layer  the densi ty  of the cu r r en t  flowing a c r o s s  the magnet ic  field can be cons ide ra -  
bly g r e a t e r  than the c r i t i ca l  densi ty  (j >>j *) [4], beginning at which the p l a s m a  becomes  unstable .  Under 
these  conditions a spec ia l  ro le  should be played by col lect ive p r o c e s s e s ,  leading to "co l l i s ion less  d i s s i p a -  
tion" of energy ,  turbulent  heating and damping of pa r t i c l e s ,  and the fo rmat ion  of a co l l i s ionless  s t ruc tu re  
of the boundary l aye r .  

We theore t i ca l ly  just i fy  the poss ib i l i ty  of the fo rmat ion  of coUisionless  boundary l aye r s  in the flow 
of a r a r e f i e d  p l a sma ,  having c h a r a c t e r i s t i c  d imension much l e s s  than the par t ic le  mean  f ree  path, in o rde r  
of magnitude,  equal to C/Wpi, where  Wpi= (41rne2/M) ~/2 i s t h e  i o n - p l a s m a  frequency.  

1. We cons ider  the plane flow of a r a r e f i e d  l o w - p r e s s u r e  p l a s m a  (fl = 4VnTe/H2<< 1) near  an e l ec -  
t rode  (Fig. 1). We a s s um e  that  the c h a r a c t e r i s t i c  f requencies  of all  the motions a re  much less  than the 
e lec t ron  L a r m o r  f requency co H = e H / m c ,  and the p l a s m a  is quas ineut ra l  (n e = n i = n). Under these  con- 
ctitions, the equations for  the e~ectron and ion components  of the p l a s m a  take the fo rm 
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Fig. 1 

where  v e and v i a re  the mean veloci t ies  of e lec t rons  and ions; m and M 
are  the i r  r e spec t ive  masses ;  pe = nTe is the gas-kinet ic  p r e s s u r e  of the 
e lec t ron  (we assume that Te>> Ti); T e and T i a re  the t empera tu re s  of 
e lec t rons  and ions, respect ively;  R f  is the effective force  of fr ict ion,  due 
e i ther  to the "infrequent" Coulomb coll is ions or  to the col lect ive col l i -  
sions.  Introducing the m ean -m ass  veloci ty 

v : ( m v , + M v  O / M  o, M o = m + M  

and eliminating the e lec t r i c  field E in (1.1), we obtain the sys tem of equations 

O.._n + div (nv) = 0 Ot 
Ov  mMc~ (rotH) 

Mon(~-F-~ (vV)v) = + [ r o t I t ,  I t ] - -  VPe _ Mo(4uep(rot, H-V) - -  

~/- = rot [vH] + ro t  ~-~-~-)-- 4---u~oro~ , ~4--~Mo) -g- • 

(1.2) 

The sys tem of equations of two-fluid hydrodynamics  in such form had been repeatedly used  ea r l i e r ,  
for  example in [5]. In our  study the initial sys tem of equations (1.2), being complete,  will be used for  the 
solution of a par t i cu la r  problem - the investigation of the s t ruc tu re  of an unstable,  turbulent  flow of a 
r a r e f i ed  p lasma in a boundary layer  (Fig. 1). 

With this  aim we analyze below one of the possible mechanisms  of col lect ive fr ict ion,  resul t ing f rom 
the growth of mic roscop ic  turbulence in the boundary layer ,  and as a supplement to the sys tem (1.2) we 
give the closing equation for  the energy density of the unstable osci l la t ions.  

2, The plasma flow in the boundary l aye r  is unstable i f  the cu r ren t  veloci ty  

I u [ = 4--~1 rot HI 

exceeds  a ce r ta in  c r i t ica l  value u* [4]: 

In I= ~lro~Hl>u* (2.1)  

In a p lasma having "hot" e lec t rons  (Te>> T i) the most  unstable osci l la t ions a re  of " ion-acoust ic"  
type, having, in agreement  with [4], the following values  for  f requency w k and growth ra te  Tk: 

+~ = kv + kv~, a = (I + k2p~2)  -'/~' 

( ],f~kv,as~ (ok rot H 
T~ = \ 2kll~r e / \ -~-[~ --o)~), k 2--k• ~ 

(2.2) 

Here  we have introduced the notation 

=/r4'J" (2r4'+. vs \ .~/ , 9~e= vre eH 
~H--'~ ' U T " : \ - ~ /  ' (l)l'le ~" m"-'s 

where  v s is the ion-acoust ic  velocity,  kll and k . a r e  project ions  of the wave vec to r  k on the longitudinal 
and t r a n s v e r s e  di rect ions  of the magnetic field, respec t ive ly .  

An investigation of an ion-acoust ic  instability,  pe r fo rmed  in [4], shows that the most  unstable pe r -  
turbat ions a re  " skew perturbations" ," for  wMch" k [ i / k ~  (m/M)l/2and, the wavelength is" of the o rd e r  of the 
L a r m o r  e lec t ron  radius  k -1 ~PHe-  The instabilit~ boundary l ies  at the level  of ion-acoust ic  veloci ty  
u*  ~ v s, and the maximum growth ra te ,  in o rde r  of magnitude, is equal to the hybr id  frequency We, i = 
(WHiWi_ie) 1/2, where  COHi= e l l /Me is  the L a r m o r  ion f requency,  
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We a s s u m e  that  eve rywhere  in the boundary l ayer  the cu r r en t  ve loc i ty  exceeds  the c r i t i ca l  value, and 
the p l a s m a  s ta te  is  uns table .  Growth of an ins tabi l i ty  leads to the occu r rence  of a col lect ive fr ic t ional  
force  Rf  between the e l ec t ron  and ion components ,  which according  to [4] equals  

k ~ k \2(o~k {{ VTe / \ - ~ n  - -  s "u W k  (2.3) 

Here  the summat ion  is  c a r r i e d  out ove r  all  wave number s  k for  which the osci l la t ions a re  unstable .  
The m a x i m u m  contr ibut ion to the sum is made by the wave numbers  for  which the ins tabi l i ty  growth ra t e  
is  a max imum;  the re fo re ,  eve rywhere  below, the summat ion  will  be rep laced  by the single t e r m  that has 
m a x i m u m  instabi l i ty  of the components  of the wave vec to r  k* : 

k II * ~-~ k* (m / M )  '/~, k* . ~  plte -1 

In Eq. (2.3) W k is the spectral density of the oscillation (noise energy). In quasilinear theory [6], 
which describes the weakly turbulent plasma state and on the basis of which we will consider below the 
principal macroscopic effects owing to the growth of ion-acoustic turbulence, the growth in oscillation en- 
ergy is given by the following kinetic equation: 

(2.4) 

Here  O W k / O k  is  the osci l la t ion group veloci ty ,  for  an ion-acous t ic  instabi l i ty,  equal to the m e a n -  
m a s s  veloci ty  v.  

Thus,  the s y s t e m  of equations (1.2) together  with (2.3) and (2.4) is se l f -cons i s t en t  and qual i tat ively 
c o r r e c t l y  indicates  the pr inc ipa l  m a c r o s c o p i c  ef fec ts  that  r e su l t  f r o m  the growth of m ic roscop i c  i o n - a c o u s -  
t ic turbulence. 

In addition to the ion-acous t ic  instabil i ty,  which has  a low exci tat ion threshold  u* ~ v s and which 
gives a m a x i m u m  contr ibution to the anomalous  p l a s m a  r e s i s t a n c e  for  cu r r en t  ve loci t ies  significantly 
g r e a t e r  than the ion-acous t i c  ve loc i ty  u >> v s, m ic roscop i c  turbulent  osci l la t ions  can be exci ted in the e l ec -  
t ron  fluid, leading to the appearance  of a c h a r a c t e r i s t i c  m a c r o s c o p i c  effect  of " anoma lous - e l ec t ron i c -  
v i scos i ty"  type.  The physica l  sense  of this  ef fec t  can be unders tood  by convert ing to the equation of motion 
of e l ec t rons  in s y s t e m  (1.1). 

We f i r s t  cons ider  an ins tabi l i ty  of  turbulent  osc i l la t ions  (rot E ~ 0) in an i ncompres s ib l e  e lec t ron  
fluid (div v e = 0). Fo r  def in i teness  we cons ider  plane flow of the e lec t ron  fluid. The mean  e lec t ron  veloci ty  
is d i rec ted  along the y axis and is  inhomogeneous along the x axis;  the magnet ic  field is d i rec ted  along the 
z axis .  

We introduce the following notation for  ve loci ty  v e and vor t i c i ty  ~: 

re------ 4 ~ r ~  ~ r o t v ~ =  AH 

Applying the ro t  (= curl) opera t ion  to the e lec t ron  equation of motion and pe r fo rming  a Four i e r  t r a n s -  
fo rmat ion  for  sma l l  pe r tu rba t ions  that  can be r e p r e s e n t e d  in the fo rm N H~ (x) exp ( - i w t +  iky), we obtain 
a d i spers ion  equation which d e s c r i b e s  the flow ins tabi l i t ies  of an i ncompres s ib l e  e lec t ron  fluid: 

H " - -  o~a 2 - -  ia2vl + ~c a~k[t~ + H _  (1 + k2a ~) - -  . mc race a~kHo,rt + ik~a%1 = 0 (2.5) 

Here  v f  = O R f / O v e m n  is  the effect ive f requency of e las t ic  sca t t e r ing  of e lec t rons ,  a = C/Wpe is  the 
d i spe r s ion  scale ,  H ~  (x) is  the osci l la t ion ampli tude of the magnet ic  field, which depends on the x coord i -  
nate .  Equation (2.5) has  the s ame  s t ruc tu re  as the equations of turbulent  osci l la t ions  of an ideal  fluid. 

We cons ider  the s p e c t r u m  of the unstable  osci l la t ions  in the quas ic l a s s i ca l  approximat ion kd In H /  
dx>> 1). Applying to Eq. (2.5) the method of "quas ic l a s s i ca l  quantizat ion," for  the l imit ing case  when kdln  H /  
dx>> i ,  we obtain the following va lues  for  the f requency w k and the growth ra t e  Yk of the unstable  osc i l l a -  
t ions: 
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Fig.  2 

o)~ = k a  4 ~-c [(k2 + k~2) Ho' + Ho']  ~*, a* = [1 + (k ~ + k~ 2) a~l -~ 

7~=-- (k~+k~)a2v1~*'  k ~ " = \ A ~ /  ( . - -1,2,3 . . . .  ) 
(2.6) 

Hence we obtain a s imple  c r i t e r ion  for  the ins tabi l i ty  of m i c r o s c o p -  
ic cu r r en t  vor t ices :  

= ,_ 0R1~ 
~f mn Ov 0 

This  c r i t e r ion  indicates  that  the f r ic t ional  force  acting on an e l ec -  
t ron  should d e c r e a s e  with inc reas ing  mean  veloci ty .  The force  of  Cou- 

lombic  fr ic t ion and also the force  of col lect ive f r ic t ion can se rve  as examples  of such fo rces  in a p l a sma ,  
if  in it the mean  t h e r m a l  veloci ty  v T is r ep laced  by  the mean  ve loc i ty  v e. The physical  sense  of this in-  

e . �9 . o 
s tabi l i ty  is  that  e v e r y  sma l l  e lec t ron  veloci ty  pe r tu rba t ion  that  leads to a veloczty i nc r ea se  d e c r e a s e s  the 
f r ic t ional  force  and hence again loads to an i nc r ea se  in ve loc i ty  per turba t ion .  

The growth of m ic roscop i c  vo r t i ca l  ins tabi l i t ies  leads to an "anoma lous -e l ec t ron -v i scos i t y "  effect .  
It is  easy  to ve r i fy  this ,  by averaging  over  the r andom-osc i l l a t ion  phases  in the e lec t ron  equation of motion.  
As a r e su l t  of the averaging,  in the total  ba lance  of fo rces  for  the e lec t ron  component  a new quantity ILxy 
en te rs :  

H ~  = mno ( v x ~ v ~ _ * )  (R v = - -  Orlx~ /a:O 

physical ly  denoting the v i s c o u s - s t r e s s  t ensor ,  which r e su l t s  f r o m  the sca t t e r ing  of e lec t rons  by r andom 
vo r t i ca l  osc i l la t ions .  In o rde r  to calculate  this quantity we mult iply Eq. (2.5) by the complex  conjugate of 
the ampli tude H a * ,  and we sub t rac t  the complex conjugate f r o m  the equali ty obtained. As a resu l t ,  for  
the case  inwMchkdlnH/dx>> 1, we obtain 

I I ~  = - -  ~ ,  2 n m n  o I vk~ ]~6 (r - -  ku) a~ ~ ,  ' 

k . 

kc H 
(2.7) 

The appearance  of a 6 function h e r e  indicates  the r e sonance  in te rac t ion  m e c h a n i s m  of the sect ions  
of  the e lec t ron-ve loc i ty  prof i le  v e (x) with exci table  osci l la t ions  for  which the phase  veloci ty  equals  w/k= 
re(X). 

Equation (2.7) enables  us  to e s t i m a t e  the coeff icient  of  anomolous e lec t ron  v i scos i ty  

TI =" ~-a 2nnorn I v~ [~6 (o) --  ku) 
k 

This  coeff icient  i s  propor t iona l  to the square  of the vo r t i ca l -osc i l l a t ion  ampli tude [Vkx [2 or  the o s -  
ci l la t ion energy  densi ty .  F o r  this  quantity, by analogy with ion-acous t ic  turbulence,  we can wri te  ak ine t i c  
equation. However ,  for the subsequent  analys is  it is not n e c e s s a r y  that  we do this;  t he re fo re  we r e s t r i c t  
ou r se lves  only to the above quali tat ive r ep re sen t a t i ons .  

3. We f i r s t  cons ider  the example  of  flow pas t  a "magnet ized  plane e lec t rode ,"  r e p r e s e n t e d  by a 
magnet ic  dipole that  is  s t rongly s t re tched  along the unper tu rbed- f low veloci ty  v 0 formed,  for  example ,  by  
a s y s t e m  of l inear  conductors  with a cu r r en t  (Fig. 2). 

The boundary  conditions in this  p rob l em a re  as follows: 

H = H0, v ~  0 for  y = 0; (3.1) 
H - >  H ~ ,  n---> n o, v . ->  v o as y . - ->~oo ,  x ~ 0  

In the ideal case  the magnet ized  e lec t rode  can be a s sumed  to be  inf in i tes imal ly  thin, so that  the p e r -  
turbat ions  introduced by it into the p l a s m a  flow a re  sma l l .  In this  case  the ini t ial  s y s t e m  of equations can 
be l inear ized  with r e s p e c t  to the smal l  per turba t ions ,  and the nonl inear i ty  can be taken into account only 
In t e r m s  of the f r ic t ional  force  Rf .  The c r i t e r ion  of appl icabi l i ty  of pe r tu rba t ion  theory  will  involve the 
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Fig. 3 

smal lness  of the relat ive concentration fluctuations in the flow (n-n0)/n0<< 1. 
We represen t  the init ial  quantities in the form 

V= = vO + v~, V~ = v~, n = no + n 

Assuming that the magnetic field H, which is perpendicular to the flow 
velocity, is directed along the z axis, f rom the system of initial equations 
(1.2), (2.3), and (2.4) we obtain 

On On n {Ovx Ovv\ 
~-+  Vo~ + o\-y~- + ~-)  = 0 

OVx Ovx Ho OH , 1 O pe ,.~ 
o'-s + Vo - ~  + ~ - ~ , M - ~  • ~-Z--~ ~ = u 

Ov u , Ov u Ho OH 1 00~ = 0 

"OH OH - /Ovx Ovy~ O__T.q_l)o.~zz + Hol..j_x_x +_j_~2/ , a Z ( O _ [ _  O\ /O 'H O~'H, O [ . . ,  OH\ 0. OH : 0  

( ~ O ~ z v = ~ _  ; v u ) n , n  W,*= 2 \ {ck* rot It_4~ nv, k*)  (3.2) 

Here a = C/Wpe is the charac ter i s t ic  dispersion scale, which resu l t s  from taking account of the elec-  
t ron inert ia ,  the wave number  k*, and an a rb i t r a ry  pa ramete r  (k*v s a3/~t] * VTe) affecting the rate of growth 
of microscopic  turbulence, here  and below assumed respect ively  equal to 

k*~pn~ -~, k*v,c~3/kl l*vr ~ i  , ~ =  a2k*/nomv,  

The solution of the initial sys tem of equations (3.2), which described the s t ructure  of the plasma flow 
in the magnetic boundary layer ,  can be conveniently investigated by the method of charac ter i s t ics .  We f i rs t  
find the expression,  approximate in the f ramework of the l inear  theory,  for  the charac ter i s t ics  (we de-  
termine their  slope with respect  to the electrode plane), and then we analyze the small  perturbations prop- 
agating along them. 

Equations for the charac ter i s t ics  are obtained i f  in the initial sys tem of equations (3.2) we neglect 
the coll is ionless dissipation and dispersion,  i .e.,  i f  we set  the noise energy density equal to zero and a -~0: 

FIo ~ / 4~noM , (3.3) 
-~ g ~ x tg c~ = const, tg ~ (z ~-- v~ ~ _ Ho"- / 4unoM 

Here a is the slope of the corresponding character is t ic  with respect  to the electrode plane. As a 
resul t  of the nonlineari ty in the slope of the charac te r i s t i cs  with distance from the electrode, there is a 
decrease  r ight  down to zero in the unpertnrbed-flow region (Fig. 2); at the same time, the flow velocity 
along the character is t ic  montonically increases  f rom zero to the unperturbed-flow velocity v 0' and the 
magnetic decreases  from a maximum value H 0 at the electrode to zero in the unperturbed flow. 

We consider the propagation of small  perturbations along the charac te r i s t ics .  Introducing the coo r -  
dinate of the char acteristic s ~ = y-x ~an ~ and making the following sub stitutions in the initial system of 

equations (3.2): 

0 O 0 0 ~y-->~, ~ - + - - t g a ~ ,  v~=(V~--v=tg~) 

- -v .  tga=V0~, k~*=k~*+~u*tg 

we obtain equations that describe the propagation of small  perturbations along the charac ter i s t ics  

�9 0 tg2@ [ Hell On (3.4) 

OH 0 ( 0)0~H [ 
--Or + ~ (v~ + Hove) - -  a2(l + tg2a) 0~ + vo~ ~ ~-~ -- ~0 Wk.%(l + tg2a) OHo~ 

(0 0) ( ck~* 0H ) 
+ v 0 ~  lnW~= 2ae,0 04 2k*v~ 

k~* cW ~. 1 
-~o J 0 
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The s t ruc tu re  of these  equations r e s e m b l e s  the s y s t e m  of equations inves t iga t edbyIvanov  and Rudakov 
[6], descr ib ing  the dynamics  of the quas i l inear  re laxat ion  of a beam in a p l a s m a .  The ro le  of the d i s t r ibu-  
t ion function in the p rob lem being cons idered  is  p layed by the magnet ic  field. However,  be fore  we apply 
the r e su l t s  of [6] to the s y s t e m  (3.4), we shall  s impl i fy  it. 

We f i r s t  cons ider  the genera l  c h a r a c t e r  of the p r o c e s s  being desc r ibed .  The init ial  stage of p e r -  
turbat ion growth on a plane plate,  which genera tes  in the h a l f - s p a c e  x > 0 an ini t ial  magne t ic - f i e ld  d i s t r i -  
bution H0(Y), will p roceed  as follows. A r a r e f i ed  p l a s m a  flow enter ing the region of unper turbed  m a g -  
netic field begins to in te rac t  with it. In the p l a s m a  the re  a r i s e s  an induction magnet ic  field m a i n -  
rained by a vor t i ca l  cur ren t ,  which begins to displace the init ial  magnet ic  field. A nonlinear wave 
of compres s ion  of the magnet ic  field moves  towards  the e lec t rode  along a cha rac t e r i s t i c ,  where  the 
wave profi le ,  which is  desc r ibed  by a s imple  Riemann wave, owing to the nonlinear dis tor t ion of the 
shape with t ime ,  i n c r e a s e s  in s t eepness .  The " reve r s ing"  of such a wave is r e s t r a i n e d  by compet ing 
effects:  d i spe r s ion  and diss ipat ion [7]. On the front  of  such a wave, as a r e su l t  of a cu r r en t  instabi l i ty  
the re  is  exci ted a mic roscop i c  turbulence,  the m a c r o s c o p i c  e f fec ts  of which qual i tat ively accura te ly  de-  
sc r ibe  the s y s t e m  of equations (3.4). 

In conformi ty  with [6] we inves t iga te  only the final s tage of quas i l i nea r  re laxat ion,  when the wave 
front  i s  shaped in the fo rm of a "s teep  s tep" (Fig. 3), where  the p l a s m a  veloci ty  in f ront  of the front  is  
c lose  to zero ,  and behind the front  it  r e aches  i ts  m a x i m u m  value,  c lose  to the tmper turbed- f iow veloci ty  v 0. 

Neglecting the p l a s m a  veloci ty  in front  of the front in compar i son  with the ve loc i ty  of  the front  i tself ,  
f rom the s y s t e m  of equations (3.4) we can obtain 

ck~* OH (3.5) 
+ v 0 ~ -  In \  W 0 / =  2~e~0 0~ f o r  ] ~ y *  

These  equations in s t ruc tu re  ag ree  with the s i m i l a r  equations inves t igated in [6] with accu racy  up to 
the substi tution 

H --> 1, 0 O 0 0 0 - ~ - + V o ~ - ~  a s ' ,  - ~ - f f  as  a - ~ 0  

In these  equations,  W 0 i s  the ini t ial  osc i l l a t ion-energy  density,  equal  to the thermal - f luc tua t ion  en-  
e r g y  density,  and 

ck~* OH I 
2nenok* O~ ~ v8 

The solution can be r e p r e s e n t e d  in the fo rm 

r t t  L t -I- a~ \ (2noMv~ r 

l~ \ .Wo ] - -  ~" zo (z,, - -  z ) ,  ~. - (t - ~/'-'o~)v:' L a~,',*W~ ~ T tg~ ~.)J 

(3.6) 

where  z 0 is  the ini t ial  coordinate ,  and li i s  a function of the in tegra l  logar i thm.  

An analys is  of the solution shows that  the magne t ic - f i e ld  front,  r e p r e s e n t e d  by a s teep step (Fig. 3), 
leads  the noise front .  This  cha rac t e r i s t i c  p rope r ty  of the dynamics  of  quas i l inear  re laxat ion,  noted in [6], 
has  a d i rec t  analogy with a " the rma l  wave,"  where  the s t eepness  of the front  is due to the t e m p e r a t u r e  
dependence of the t h e r m a l  conductivity being a power  law. The equation for  the t h e r m a l  wave follows f rom 
(3.5) if  we make  the fo rm a l  substi tution Wk* - -  T, where  T is  the t e m p e r a t u r e  in the t h e r m a l  wave,  and 
we set  a -= 0. 

To find a solution of (3.6), descr ib ing  the leading pa r t  of  the steep front,  we neglected the d i spe r s ion  
effect,  since it  has  no effect  on the s teepness  of the leading front,  which is  comple te ly  de te rmined  by the 
growth ra t e  of the noise energy .  This can be ver i f i ed  in the following manner .  We as sume  that  at the l ead-  
ing front  of the re laxa t ion  wave the d i spe r s ion  effect  ba lances  the effect  of  the va r i a t ion  in s teepness  owing 
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to the fo rmat ion  of a t h e r m a l  wave; in other  words ,  we will  a s sume  that  at the leading front  the force  of 
e l ec t ron  iner t i a  equal izes  the force  of turbulent  f r ic t ion.  In this  case  we can expect  that  the s teepness  of 
the f ront  will  be f lat tened.  We show, however ,  t h a t  this is  not so.  

Equating in s y s t e m  (3.5) the two types  of  f o r c e s  and us ing  the noise equation~ a f t e r  in tegra t ion we 
find the following solution, which desc r ibes  the leading front  of  the wave: 

t !t' OH 2~en0Z W~*, k~* ~ P~e 
Wk--- ~ -~ PIle n~ "~ C0BSt, -~  ca2k , 

Hence we see that  the c h a r a c t e r i s t i c  d imension of the front  

'nomvsvo (vsvo) hX=Voht' ~oH e ~ p ~ e  7 

s t rongly  depends on the osc i l l a t ion -ene rgy  densi ty  and can be made a r b i t r a r y  smal l ,  for  example ,  s m a l l e r  
than the d i spe r s ion  sca le  Ax<< a, by inc reas ing  the osci l la t ion energy .  An e s t ima te  was made above of 
the front  width for  the m a x i m u m  ene rgy  densi ty  of ion-acous t i c  turbulence,  which in o rde r  of magnitude 
equals  W m a x ~  1/2 nmu 2. 

Thus,  the growth of m i c r o s c o p i c  turbulence  favors  the effect  of an i nc r ea se  in the magne t ic - f i e ld  
s t eepness  and can lead to a r e v e r s a l  of  the wave f ront  and the genera t ion  of two-flow motion.  However,  
even in the f r a m e w o r k  of the cons idered  approximat ion  the re  ex i s t s  a r e s t r i c t i v e  m e c h a n i s m .  If  the noises  
behind the wave f ront  were  to i n c r e a s e  infinitely rap id ly  in compar i son  with the c h a r a c t e r i s t i c  t ime  of 
mot ion of the f ront ,  then the magne t i c - f i e ld  f ront  would become  infinitely s teep and would r e v e r s e ,  but in 
actual i ty  the growth t ime  of the ins tabi l i ty  is finite; t he re fo re ,  the d imensions  of the f ront  a re  finite and 
propor t iona l  to i ts  veloci ty .  I f  for  given ve loc i ty  of the f ront  the mic roscop i c  turbulence  is  not able to 
ensu re  the magnet ic  p r e s s u r e  that  i s  needed for  this  different ial ,  then for  such c r i t i ca l  magnet ic  f ields the 
wave front  r e v e r s e s ,  and two-f low mot ion a ppea r s .  

Thus,  the growth of ion-acous t i c  turbulence  can lead to an i nc r ea se  in the s t eepness  of the magne t i c -  
field f ront  and hence to a local  gain of the cu r r en t  induced in the p l a s m a .  This  effect  of a "p la sma  m i c r o -  
pinch" can also be connected with the specia l  c h a r a c t e r  of the dependence of the turbulent  f r ic t ional  force  
on the mean  e lec t ron  veloci ty  Rf(Ve), which d e c r e a s e s  with inc reas ing  v e.  This  condition is  n e c e s s a r y  for  
the exci ta t ion of m i c r o s c o p i c  vo r t i ca l  osci l la t ions ,  whose growth can lead to the appearance  of the effect  
of anomalous  e l ec t ron  v i s cos i t y  and, hence,  to a m e c h a n i s m  stabi l iz ing the effect  of  the i nc r ea se  of  the 
s t eepness  of  the magne t i c - f i e ld  f ront .  F r o m  the compet i t ion  of the two opposing m e c h a n i s m s  we can find 
a s t a t ionary  solution for  the magnet ic  field and noise at the front .  However,  this  invest igat ion is beyond 
the scope of the p r e s e n t  a r t i c l e .  

We find the veloci ty  of the f ront  and the c r i t i ca l  magnet ic  field.  On the ba s i s  of the sy s t em of equa-  
t ions (3.4), we find the s ta t ionary  solution 0 / 0 t - 0 ,  which d e s c r i b e s  the s t eady - s t a t e  magne t i c - f i e ld  d i s -  
t r ibut ion along the c h a r a c t e r i s t i c .  In this  case  the veloci ty  of the front  i s  approx imate ly  equal to the un-  
pe r tu rbed- f low velocity: 

V] ~ V o . 

These  solut ions a r e  desc r ibed  by the equat ions 

02H v0~ (H Hoo) = a 2 ( 1 +  tg 2 a) v0~ ~ + zWk* (1 + Ug ~ ~) OH ~V 
eke* /W~. 

(H - -  H~) = v0~ln { T~t- ~ 
2~en 0 \ VVO l 

(3,7) 

The solution for  the magnet ic  field and the noise has  the fo rm 

Wk'g/ Wo 

(3.8) 
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Fig. 4 

~x 

It desc r ibes  the leading par t  of the steep front and is  applicable 
r ight  up to values  of the magnet ic- f ie ld  gradient  

OH 10~ ..~ 2genov,k* / ck~* 

for  the gently sloping par t  of the distribution,  where the cu r r en t  ve-  
locity i s  close to the c r i t i ca l  value.  Assuming 

OH / 0~ ~ H~k*v~ 12kr 

in Eqs.  (3.7), we find the veloci ty  of the wave front  v@ and the c r i t i ca l  
magnetic field Hc, beginning at which the wave r e v e r s e s :  

[ H~r 2 y/, Wma x(l-Ftg 2~) ]% 
YOV-" = \ ~ ]  [ mno In (Wma x / W~J 

[ "0~ Ill ( Wmax 1 ] (3.9) 
Hc = g ~  t--~ 2k .a2~Hi,o ~ \ Wo /J 

\ 

F or  the ent i re  gently sloping par t  of the distr ibution (Figs, 2 and 3), with good accuracy  the equality 

d~ = c k ~ v ~  or nT~= ~o)~ i \ k, ] \ - ' ~ ]  

is s a t i s f i e d .  
It can serve  as the e lec t ron  energy  equation. Substituting this  express ion  for  the gas-kinet ic  p r e s -  

sure into (3.4), we obtain the following equation for  the gently sloping par t  of the magnet ic- f ie ld  distribution: 

( -'~pl k~*\~-dH 2 [- ~ (H- -H~)  Ho(H-- 

We find the solution for H -~ Hoo, which "connects"  with the steep par t  for  H-* H 0 : 

(3.11) 

/ eke* ~ [ noMvo~ t lo~ ]'/' 
2 l ~ J  [ ( ~ - / - L o )  Lr0],/, = L ( ~ )  ~ j (~ - ~o.) (3.12) 

Any width of the front,  in o rde r  of magnitude, is  equal to 

[ ck~* ~ [ H~176 + tg~) ]% c 

Thus, the solution for  the boundary layer  has  been found. Such a boundary layer  can be called co l -  
l i s ionless  since the mean f ree  path of a par t ic le  can be considerably g r e a t e r  than i ts  dimensions.  F igures  
2 and 3 show the s t ruc ture  of the boundary layer  in this  case.  F r o m  the f igures  we see that near  the e lec -  
t rode,  where  the s teepness  of the magnetic field is  great ,  the re  is a la rge  cu r ren t  d i rec ted  opposite to the 
unper turbed-f low veloci ty.  In this region there  is  strong damping of the pr incipal  flow. We wri te  the ba l -  
ance for  the fo rces  acting on an ion in this region: 

�9 dv ix  ~ k*  d W ~ .  
Mnvix ~ = -- Rlx= 2o) k. vi~ dx (3.14) 

The ions are  damped by the turbulent  force  of f r ic t ion R / .  At the same t ime,  the work going into the 
noise excitat ion and hence into the turbulent  e lec t ron  heating is  equal to 

i d 3 
( Rsv0 ~ 24 (Mn)2 v2 ~ W~~ 

622 



4. We cons ider  flow par t  pas t  a magnet ic  dipole, which c r e a t e s  magnet ic  l ines of force  in the ilow 
plane (Fig. 4). For  def in i teness  we a s s um e  an inf in i tes imal ly  thin dipole, so that  the per tu rba t ions  in t ro -  
duced by it  into the flow are  smal l .  We cons ider  the flow to be in the xy plane.  The flow veloci ty  has c o m -  
ponents  Vx and Vy, the magnet ic  field cor respondingly  having the components  H x and Hy. We l inear ize  the 
ini t ial  s y s t e m  of equations (1.2) and we take account of the nonl inear i ty  only in t e r m s  of f r ic t ional  force  Rf : 

at +- v~ Yiz 4- no \ o~ + ~ov / = 0 ,  o- -T-+--~--  = 0 
{OVx Ovx\ HC~j ( Ohx Ohy) lope 

Mno \ Ot 4- Vo -~-z) = ~ Oy Oz Ox 

mno (--~- 4- Vo -5~-z ] = 4~ \ Ox Oy Oy 

Wk Oh x 
'~2;~eno \ Ox Oy ) -  2k*v~ 

(4.1) 

Ot -- -~y v~Hov --  v~Ho~ 4- vohy 4- ckWk c Oh~ 
e~-----g- ~ oz Oy - -  

Oh~ _ 0 v~Hoy --  vuHo~ 4- uohx 4- - -  - -  t 
Ot Ox eno L 4genovs \ Ox Oy 

We find the equat ions for  the c h a r a c t e r i s t i c s  

~ = y - -  x t g a ,  t g a  ~-- (H~x4-H~Y) (4.2) 
4~noMvo 2 -- (g~x 4- H~u ) 

H~: = Hox 4- h~, Ht,=- Hoy 4- hy, V:~ = Vo 4- v~., Vu = v~, 

Here  a - ~  0, the cu r r en t  i s  d i rec ted  along the z axis .  

We cons ider  s ta t ionary  smal l  pe r tu rba t ions  along the c h a r a c t e r i s t i c s .  The s y s t e m  of equations that  
d e s c r i b e s  the dis t r ibut ion of magnet ic  f ield and of noise along the c h a r a c t e r i s t i c  l ines  ~ = y - x t g  a has  the 
f o r m  

(h u - -  hu~ ) I -~ tg 2 a4~Mnovo 'z ~ W~, 4nenovs tg a 0~ 

/ Wk* \ ck* (i + tg~ a) (hy - -  hy~) (4.3) 

S imi la r ly  we find the solution for  the steep and gently sloping pa r t s  of the dis t r ibut ion of the m a g -  
ne t ic - f ie ld  f ront .  Fo r  the steep pa r t  of the step we obtain the solution 

[ (W. l 
h v = hu~ t 4- 2k.afa)Hi "~ In \ Wo ]]  

li \---~o / = (l-t-tg~a)W0 i 4- ~ n ~ o  i aZk, 

(4.4) 

This  solution holds for  all  magne t i c - f i e ld  g rad ien t s  r ight  up to 

Ohv tg ct 4genoVs 
0~ ~ (i 4- tg~ ~) c 

for  which the cu r r en t  ve loc i ty  is  c lose  to the c r i t i ca l  value.  Fo r  the gently sloping par t ,  r ep lac ing  the gas -  
kinet ic  p r e s s u r e  Pe = riTe by 

4~tg 2aco~i \ 05 ] 

we obtain the equation 

(~ + t~2 ~) ~ ( 0h~ I s 
4nMnovo 2 tg 2 ~ (o~ \ 0~ ] 

(H0~ ~ H~u)(t 4- tg~ d) (hu -- h w )  [ l  --  ~ • 
= (Ho-~+---Ho'~a) 4gnoMv0' ] (4.5) 

I t  g ives  the solution 
c [ (hy -- hy~)(Hoy4-Hox/tga)(t4-tg~-a) ]'/, 

r 4~no-M~ 2 = ~ 4- tg a) (Hox ~- goy) 
(4.6) 

623 



which "connects"  for  $ --. 0 with the solution for the steep par t .  Sktbstituting in Eq. (4.3) the cr i t ica l  value 
instead of the cu r ren t  velocity,  we find the unper turbed-f low veloci ty  v 0 and the c r i t i ca l  magnetic field H c : 

y0 = : 4~--~e tg a \nornv s In (Wma x tWo) /Ll ~- tg'- a4nnoMVo~ J 
(4.7) 

H c = Hyo~ I ~- 2k,a~o~Hi,oo 

Figure  4 shows the s t ruc tu re  of the flow in this  case.  The dimension of the boundary layer  in o rde r  
of magnitude equals 

and can prove to be considerably  less  than the cha rac te r i s t i c  mean f ree  path of a par t ic le ;  the re fo re ,  this 
boundary l aye r  can be called col l is ionless .  The pr incipal  dissipation of energy  and strong damping of the 
flow occur  nea r  the e lec t rode  in a na r row l aye r  in which the maximum cur ren t  density is local ized.  In 
this  case  there  is  turbulent  ion damping. The energy  separated during ion damping goes into turbulent  
e l ec t ron  heating. 

Thus it has been shown that for  the flow of a r a r e f i ed  p lasma s t r eam past  magnet ized bodies,  for  a 
cer ta in  value of the flow veloci ty in the boundary l aye r  a mic roscop ic  turbulence can be excited,  leading 
to col l is ionless  dissipation of the energy  of the flow, turbulent  p lasma heating, and format ion of a col -  
l i s ionless  boundary layer ,  the dimension of which is l e ss  than the par t ic le  mean f ree  path. However ,  for  
a cer ta in  re la t ion  between the flow veloci ty  and the field intensi ty such a flow can prove to be unstable 
because  of the r eve r s ing  of the wave prof i le .  
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