STRUCTURE OF A COLLISIONLESS BOUNDARY LAYER
AND TURBULENT DAMPING OF IONS

V. 1. Aref'ev UDC 537,521

The flow of a low-pressure plasma in a MHD channel is unstable in a number of cases. The
instability can be caused by a current flowing across the magnetic field. In this study we
investigate an unstable, turbulent flow of a rarefied plasma near the "magnetized electrodes,"
representing plane magnetic dipoles. Owing to the growth of microscopic turbulence near
the electrodes, the maximum density of the current that is induced in the plasma is localized
and turbulent damping of the incoming flow occurs. The energy of damping goes into the
turbulent heating of the plasma. Under these conditions a structure of the boundary layer is
found for a stationary flow. The characteristic transverse dimension of the boundary layer
is considerably less than the particle mean free path; therefore, such a boundary layer can
be called "collisionless."

In a number of works [1-3] in the investigation of the laminar flow of a rarefied low-pressure plasma
in a MHD channel it was shown that near the electrodes, "nondissipative" boundary layers can form, the
dimension of which, in order of magnitude, equal the Larmor radius or Debye radius of electrons.

In such boundary layers, the plasma is collisionless and energy is not extracted.

In the boundary layer the density of the current flowing across the magnetic field can be considera-
bly greater than the critical density (j>>j*) [4], beginning at which the plasma becomes unstable. Under
these conditions a special role should be played by collective processes, leading to "collisionless dissipa-
tion" of energy, turbulent heating and damping of particles, and the formation of a collisionless structure
of the boundary layer.

We theoretically justify the possibility of the formation of collisionless boundary layers in the flow
of a rarefied plasma, having characteristic dimension much less than the particle mean free path, in order
of magnitude, equal to ¢/wy;, Where Wi = (4T neZ/M)i/ 2isthe ion-plasma frequency.

1. We consider the plane flow of a rarefied low-pressure plasma (B=41rnTe/H2<< 1) near an elec-
trode (Fig. 1). We assume that the characteristic frequencies of all the motions are much less than the
electron Larmor frequency Wy = eH/mc, and the plasma is quasineutral (ng=n;=n). Under these con-
ditions, the equations for the el%ctron and ion components of the plasma take the form

[/} . a .
5? + div(nv) =0, F+.div (ovi) =0
mn (%% + (veV) o) = — enE— Vp, — L [v,H] — R, 1.1
Mn (‘?_VJ + (viV) vi> = enkE - %’L iv;Hl + R,

ot
1
rotH = @f—e(vi—ve), T%?—I—rotE:O
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where Vg and vj are the mean velocities of electrons and ions; m and M
are their respective masses; p, =nTg is the gas-kinetic pressure of the
electron (we assume that Te> Tj); T and Tj are the temperatures of
electrons and ions, respectively; R s is the effective force of friction, due
either to the "infrequent"” Coulomb collisions or to the collective colli-
sions, Introducing the mean-mass velocity

Fig. 1 k v =(mv,+ Mv)/ My My=m -+ M~

and eliminating the electric field E in (1.1), we obtain the system of equations

a—n —I— div (pv) =
Mm( + (VW) v) = o [rot H, H] — Vp, — Mmg;e)z o H.9) (rotH) w2
A T I

«crob {(ro;H V) rof;LH} 4]:{::; rot {(at (v V)) rot I:II + (rot H )( v+ 4::;40 rot;f[)}

The system of equations of two-fluid hydrodynamics in such form had been repeatedly used earlier,
for example in {5]. In our study the initial system of equations (1.2), being complete, will be used for the
solution of a particular problem — the investigation of the structure of an unstable, turbulent flow of a
rarefied plasma in a boundary layer (Fig. 1).

With this aim we analyze below one of the possible mechanisms of collective friction, resulting from
the growth of microscopic turbulence in the boundary layer, and as a supplement to the system (1.2) we
give the closing equation for the energy density of the unstable oscillations.

2, The plasma flow in the boundary layer is unstable if the current velocity

[u]= = |rot H]|

Lsten

exceeds a certain critical value u* [4]:
luf =

T | POV H | > w# @.1)

In a plasma having "hot" electrons (T > T;) the most unstable oscillations are of "ion-acoustic”
type, having, in agreement with [4], the following values for frequency wy and growth rate .:
oy =kvtkoo, a={1-+k _,_2pHe2)"/"

mhkoyo® /ck rot H (2.2)
Te = (‘2/1:;:;&)(64;; "“’k)’ B =k "+ k)
e .

Here we have infroduced the notation

T\ T, 2T\
U = =i, pHE=——e, vr = (=%} , Q)H:f‘q
M oy e m e

e

where vg is the ion-acoustic velocity, k" and k, are projections of the wave vector k on the longitudinal
and transverse directions of the magnetic field, respectively.

An investigation of an ion-acoustic instability, performed in [4], shows that the most unstable per-
turbations are "skew perturbations,” for which kl / k%(m/M)1 2:a.nd the wavelength is of the order of the
Larmor electron radius k™ IN.PHe- The instability boundary 11_es at the level of ion-acoustic velocity

* % yg, and the maximum growth rate, in order of magnitude, is equal to the hybrid frequency we,j=
(@H;@H,)Y 2, Where Wiy =eH/Mc is the Larmor ion frequency.

616



We assume that everywhere in the boundary layer the current velocity exceeds the critical value, and
the plasma state is unstable., Growth of an instability leads to the occurrence of a collective frictional
force Rr between the electron and ion components, which according to [4] equals

_ Wy < Vak?ou®\ /¢ rot H k '
R =S o = 306 (i — vt 29

Here the summation is carried out over all wave numbers k for which the oscillations are unstable,
The maximum contribution to the sum is made by the wave numbers for which the instability growth rate
is a maximum; therefore, everywhere below, the summation will be replaced by the single term that has
maximum instability of the components of the wave vector k*:

Fy* o k® (m [ MY, R* o,

In Eq. (2.3) Wy is the spectral density of the oscillation (noise energy). In quasilinear theory [6],
which describes the weakly turbulent plasma state and on the basis of which we will consider below the
principal macroscopic effects owing to the growth of ion-acoustic turbulence, the growth in oscillation en-
ergy is given by the following kinetic equation:

(39 = ()t e

Here 8wk/ ok is the oscillation group velocity, for an ion-acoustic instability, equal to the mean-
mass velocity v.

Thus, the system of equations (1.2) togethef with (2.3) and (2.4) is self-consistent and qualitatively
correctly indicates the principal macroscopic effects that result from the growth of microscopic ion-acous-
tic turbulence.

In addition to the ion-acoustic instability, which has a low excitation threshold u* # vg and which
gives a maximum contribution to the anomalous plasma resistance for current velocities significantly
greater than the ion-acoustic velocity u> vy, microscopic turbulent oscillations can be excited in the elec-
tron fluid, leading to the appearance of a characteristic macroscopic effect of "anomalous-electronic-
viscosity" type. The physical sense of this effect can be understood by converting to the equation of motion
of electrons in system (1.1).

We first consider an instability of turbulent oscillations (rot E = 0} in an incompressible electron
fluid (div vg=0). For definiteness we consider plane flow of the electron fluid. The mean electron velocity
is directed along the y axis and is inhomogeneous along the x axis;the magnetic field is directed along the
z axis,

We introduce the following notation for velocity ve and vorticity Q:

. .
v, = — @rotH, erotve=4nenAH

Applying the rot (=curl) operation to the electron equation of motion and performing a Fourier trans-
formation for small perturbations that can be represented in the form ~ H_, (%) exp (—iwt+ iky), we obtain
a dispersion equation which describes the flow instabilities of an incompressible electron fluid:

Kea*Hy
me

H (—— wa® — ia®v, - ﬁe—ca%Ho') +H_ [(1 + K% — — ,,%d%[{o'” =+ ikzaz"f} =0 (2.5)
Here v¢=0R r/0vemn is the effective frequency of elastic scattering of electrons, a= c/wpe is the

dispersion scale, H _ (x) is the oscillation amplitude of the magnetic field, which depends on the x coordi-

nate. Equation (2.5) has the same structure as the equations of turbulent oscillations of an ideal fluid.,

We consider the spectrum of the unstable oscillations in the quasiclassical approximation kdn H/
dx>> 1), Applying to Eq. (2.5) the method of "quasiclassical quantization," for the limiting case when kdIn H/
dx>1, we obtain the following values for the frequency wi and the growth rate Y of the unstable oscilla-
tions:
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o = kat = [(* 4 k.3 Hy + Hy" 0¥, a* =[1 + (& + k%) a?]
2mn (2.6)

; 2
T = — (b k) aPvja*, kP = (—A;-> (n=1,2,3,..)

Hence we obtain a simple criterion for the instability of microscop-~
ic current vortices:

1 0Ry
V= e <O

Fig. 2 This criterion indicates that the frictional force acting on an elec-
tron should decrease with increasing mean velocity. The force of Cou-
lombic friction and also the force of collective friction can serve as examples of such forces in a plasma,
if in it the mean thermal velocity VT, is replaced by the mean velocity ve. The physical sense of this in-
stability is that every small electron velocity perturbation that leads to a velocity increase decreases the
frictional force and hence again leads to an increase in velocity perturbation,

The growth of microscopic vortical instabilities leads to an "anomalous-electron-viscosity" effect.
It is easy to verify this, by averaging over the random-oscillation phases in the electron equation of motion,
As a result of the averaging, in the total balance of forces for the electron component a new quantity IIXy
enters:

Moy == mng Ueny*> (R = — 011y, [ 93)

physically denoting the viscous-stress tensor, which results from the scattering of electrons by random
vortical oscillations. In order to calculate this quantity we multiply Eq. (2.5) by the complex conjugate of
the amplitude H_*, and we subtract the complex conjugate from the equality obtained. As a result, for
the case inwhichkdIn H/dx>> 1, we obtain

My = — 3 20mny | ve P8 (@ — k) 3%,
) o 2.7

The appearance of a é function here indicates the resonance interaction mechanism of the sections
of the electron-velocity profile v (x) with excitable oscillations for which the phase velocity equals w/k=

Ve (X).

Equation (2.7) enables us to estimate the coefficient of anomolous electron viscosity
n= Z 2atngm | vy |26 (@ — ku)
k

This coefficient is proportional to the square of the vortical-oscillation amplitude Ika |2 or the os-
cillation energy density. For this quantity, by analogy with ion-acoustic turbulence, we can write akinetic
equation, However, for the subsequent analysis it is not necessary that we do this; therefore we restrict
ourselves only to the above qualitative representations,

3, We first consider the example of flow past a "magnetized plane electrode," represented by a
magnetic dipole that is strongly stretched along the unperturbed-flow velocity v, formed, for example, by
a system of linear conductors with a current (Fig. 2).

The boundary conditions in this problem are as follows:

H=Hy,v=0 for y=0; 3.1)

H—>Hy n—>ngv—>v, a8 Y~>-+o0, 2 >0 *

In the ideal case the magnetized electrode can be assumed to be infinitesimally thin, so that the per-

turbations introduced by it into the plasma flow are small, In this case the initial system of equations can
be linearized with respect to the small perturbations, and the nonlinearity can be taken into account only
in terms of the frictional force Rf The criterion of applicability of perturbation theory will involve the

618



smallness of the relative concentration fluctuations in the flow (n—ng)/ny<1,
We represent the initial quantities in the form

i
g
=8

el
=

Ve=vo+ vy Vy=vy, n=ny+n
23

Assuming that the magnetic field H, which is perpendicular to the flow
velocity, is directed along the z axis, from the system of initial equations
(1.2), (2.3), and (2.4) we obtain

on an ov. av.
a_t_}_v()%—["no(‘éf“!-ﬁ):()
vy Fvg Hy oH 1 8pe
3t TV G T Gt oz T it oz = 0

vy vy Hy, 0H 1 3p,
50 T V0%t Gt 3y el y = O

‘9H | oH D | 0oy 2 O\(H  PH\ 9 2 Wi
g o0 Ho (54 G) — (G o) (55 + Gt ) — 2 (Wen 3) — & (Wan B2 + (i — kot ) S =0

Y dz 5y rae
9 3 a
(E + 5 Vet 6—yvy> nln Wi =2 (Ck* il m’sk*> (3.2)

4re

Here a= c/cope is the characteristic dispersion scale, which results from taking account of the elec-
tron inertia, the wave number k*, and an arbitrary parameter (k*vg ozg/k" * VTe) affecting the rate of growth
of microscopic turbulence, here and below assumed respectively equal to

k%=~ pHe‘l, k*v.03 [k *UTe =1, = a%*[nymuv,

The solution of the initial system of equations (3.2), which described the structure of the plasma flow
in the magnetic boundary layer, can be conveniently investigated by the method of characteristics, We first
find the expression, approximate in the framework of the linear theory, for the characteristics (we de-
termine their slope with respect to the electrode plane), and then we analyze the small perturbations prop-
agating along them,

Equations for the characteristics are obtained if in the initial system of equations (3.2) we neglect
the collisionless dissipation and dispersion, i.e., if we set the noise energy density equal to zero and ¢ —0:

E=y—2ztga =const, tg2o = ﬁ% : (3.3)

Here o is the slope of the corresponding characteristic with respect to the electrode plane, As a
result of the nonlinearity in the slope of the characteristics with distance from the electrode, there is a
decrease right down to zero in the unperturbed-flow region (Fig. 2); at the same time, the flow velocity
along the characteristic montonically increases from zero to the unperturbed-flow velocity vy, and the
magnetic decreases from a maximum value H, at the electrode to zero in the unperturbed flow,

We consider the propagation of small perturbations along the characteristics, Introducing the .coor-
dinate of the characteristics £=y—xtan @ and making the followingsubstitutions in the initial system of
equations (3.2):

9 9 i} 8
TR G 8O, ve=(vy—uitga)
—Uotga =vy, k*=hE*k*tga

we obtain equations that describe the propagation of small perturbations along the characteristics
9 , 3 HoH . ‘o B
(—5; + veg a—g) v+ (1 + tg“’a) (4,,;’0 7+ %{) =0, 5 + 5z (nove + nvee) = 0 (3.4)

8H 8 '8 a\ ?*H ky*cW o0
T +5€(UDEH+HODE)-—a2(1 4 tg?a) (55-*_ ”Oﬁa_g)a—? —%[I’V}(yx(i. +tg?a) %_IEI—__Z_C.L] =0

. eno

3 3 ck* SH
(ot o ) W = (58 5 — 2o
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The structure of these equations resembles the system of equations investigated by Ivanov and Rudakov
i8], describing the dynamics of the quasilinear relaxation of a2 beam in a plasma. The role of the distribu-
tion function in the problem being considered is played by the magnetic field. However, before we apply
the results of [6] to the system (3.4), we shall simplify it,

We first consider the general character of the process being described. The initial stage of per-
turbation growth on a plane plate, which generates in the half-space x >0 an initial magnetic-field distri-
bution H(y), will proceed as follows. A rarefied plasma flow entering the region of unperturbed mag-
netic field begins to interact with it. In the plasma there arises an induction magnetic field main-
tained by a vortical current, which begins to displace the initial magnetic field. A nonlinear wave
of compression of the magnetic field moves towards the electrode along a characteristic, where the
wave profile, which is described by a simple Riemann wave, owing to the nonlinear distortion of the
shape with time, increases in steepness. The "reversing" of such a wave is restrained by competing
effects: dispersion and dissipation [7]. On the front of such a wave, as a result of a current instability
there is excited a microscopic turbulence, the macroscopic effects of which qualitatively accurately de-
scribe the system of equations (3.4).

In conformity with [6] we investigate only the final stage of quasilinear' relaxation, when the wave
front is shaped in the form of a "steep step" (Fig. 3), where the plasma velocity in front of the front is
close to zero, and behind the front it reaches its maximum value, close to the unperturbed-flow velocity v,.

Neglecting the plasma velocity in front of the front in comparison with the velocity of the front itself,
from the system of equations (3.4) we can obtain

3, 2 8 0N\ BH | o '
<w+ voz-aﬁH:aﬁ (14 tg* o) (5;+ UOEa—a‘HgTerz:zk*X(‘ +igt “)%{‘
(3.5)

? ] Wie cke*  9H s
<137+ Uoz‘ﬁ)lf_l(”wi(’): . for j>j*

2reny 0%
These equations in structure agree with the similar equations investigated in [6] with accuracy up to
the substitution
) ) a9 8 @ .
H~—>f, -a—t—+ UoEE—%W", '@—*-a—v* as a—0
In these equations, W, is the initial oscillation-energy density, equal to the thermal-fluctuation en-
exrgy density, and

ck,*
3 0H
2menok® 0% ‘>vs

The solution can be represented in the form

H—H. [1 _}di(Wk-..('l—f-tg?a)k* )]

08 \ 2noMv, 0y Ke*
W e , (3.6)
li ( k* ) == —1— Z (Z — z) ) 2 = E [ nons ga
Wo )2 TR (£ — /g Lo (1 1 tgie)

where z, is the initial coordinate, and Ui is a function of the integral logarithm,

An analysis of the solution shows that the magnetic-field front, represented by a steep step (Fig. 3),
leads the noise front. This characteristic property ofthe dynamics of quasilinear relaxation, noted in [6],
has a direct analogy with a "thermal wave," where the steepness of the front is due to the temperature
dependence of the thermal conductivity being a power law. The equation for the thermal wave follows from
(3.5) if we make the formal substitution wk* — T, where T is the temperature in the thermal wave, and
we set a=0.

To find a solution of (3.8), describing the leading part of the steep front, we neglected the dispersion
effect, since it has no effect on the steepness of the leading front, which is completely determined by the
growth rate of the noise energy. This can be verified in the following manner., We assume that at the lead-
ing front of the relaxation wave the dispersion effect balances the effect of the variation in steepness owing
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to the formation of a thermal wave; in other words, we will assume that at the leading front the force of
electron inertia equalizes the force of turbulent friction. In this case we can expect that the steepness of
the front will be flattened. We show, however, that this is not so,

Eguating in system (3.5) the two types of forces and using the noise equation, after integration we
find the following solution, which describes the leading front of the wave:

1 4 oH 2stengy,
——— i S Ll 2 7 * ~ ool
W Py nomy, - const, I3 cale* Wie, ke =Py

Hence we see that the characteristic dimension of the front

“Romv v A
A;t:voAt’;;-p _u_"_zp < 30)
B, Wmax B\ w2

strongly depends on the oscillation-energy density and can be made arbitrary small, for example, smaller
than the dispersion scale Ax<« a, by increasing the oscillation energy. An estimate was made above of
the front width for the maximum energy density of ion-acoustic turbulence, which in order of magnitude
equals Wy~ 1/2 nmu?,

Thus, the growth of microscopic turbulence favors the effect of an increase in the magnetic-field
steepness and can lead to a reversal of the wave front and the generation of two~flow motion., However,
even in the framework of the considered approximation there exists a restrictive mechanism. If the noises
behind the wave front were to increase infinitely rapidly in comparison with the characteristic time of
motion of the front, then the magnetic-field front would become infinitely steep and would reverse, but in
actuality the growth time of the instability is finite; therefore, the dimensions of the front are finite and
proportional to its velocity. If for given velocity of the front the microscopic turbulence is not able to
ensure the magnetic pressure that is needed for this differential, then for such critical magnetic fields the
wave front reverses, and two-flow motion appears.

Thus, the growth of ion-acoustic turbulence can lead to an increase in the steepness of the magnetic-
field front and hence to a local gain of the current induced in the plasma. This effect of a "plasma micro-
pinch" can also be connected with the special character of the dependence of the turbulent frictional force
on the mean electron velocity RA(ve), which decreases with increasing v,. This condifion is necessary for
the excitation of microscopic vortical oscillations, whose growth can lead to the appearance of the effect
of anomalous electron viscosity and, hence, to a mechanism stabilizing the effect of the increase of the
steepness of the magnetic-field front., From the competition of the two opposing mechanisms we can find
a stationary solution for the magnetic field and noise at the front., However, this investigation is beyond
the scope of the present article,

We find the velocity of the front and the critical magnetic field. On the basis of the system of equa-
tions (3.4), we find the stationary solution 8/8t=0, which describes the steady-state magnetic-field dis-
tribution along the characteristic., In this case the velocity of the front is approximately equal to the un-
perturbed-flow velocity:

Uy =2 Uy

These solutions are described by the equations

vog (H ~ He) = a* (1 18° @) v g+ aW i (1 -+ 1g” o) o~

ot w.. (3.7)
The solution for the magnetic field and the noise has the form
_ : ”05 W..
H=H, [1 S ln( it )]
WiEl Wo
: (Mol vy \2 (4 —Tn ) )2 Wok*o2M
g dw {lnw ’:'1 < T*aw ) (1+ tg2 Ct)}} = (W)g + const (3;8)
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'It describes the leading part of the steep front and is applicable

¥
R N right up to values of the magnetic-field gradient
— ‘\ L g " OH | 0 = 2mengy k* | chi*
— RO

J for the gently sloping part of the distribution, where the current ve-
locity is close to the critical value, Assuming

. OH | 08 =~ H k*v, [ 2ks*a®ogi,

in Egs. (3.7), we find the velocity of the wave front vo¢ and the critical
magnetic field H;, beginning at which the wave reverses:

. ( H? )1/2[ Wiy (1 +tg2a) 7t
(e 4J'l3noTe mng In (Wmax / Wo) ]

W
= e[+ i n ()

(3.9)

\

For the entire gently sloping part of the distribution (Figs. 2 and 3), with good accuracy the equality

or ‘nTe =2 (K)z <ﬂ)2 (3:10)

dH  2menok*

dg T ckg* Vs e, \ k¥

pi de
is satisfied. .

It can serve as the electron energy equation, Substituting this expression for the gas-kinetic pres-
sure into (3.4), we obtain the following equation for the gently sloping part of the magnetic-field distribution:

(o Kk aH\* (H— H_) Ho(H— H_)

(m_pi k_) (“da_) = [""M Y ATt % ] @3.11)

We find the solution for H—~ H,, which "connects" with the steep part for H— Hj:

ckE* . "OM"QEZ Hy?
2 Ul — Ho) Hol = [m 21 et 3.12)
Any width of the front, in order of magnitude, is equal to
- chg* ) [ Ho(Ho—H_)(1 +tga) 7% .

Ab=2 < Opik* noMo2, — He? (1 -+ tg? ) / 4av J ~op . (3.13)

Thus, the solution for the boundary layer has been found. Such a boundary layer can be called col-
lisionless since the mean free path of a particle can be considerably greater than its dimensions. Figures
2 and 3 show the structure of the boundary layer in this case, From the figures we see that near the elec-
trode, where the steepness of the magnetic field is great, there is a large current directed opposite to the
unperturbed-flow velocity, In this region there is strong damping of the principal flow, We write the bal-
ance for the forces acting on an ion in this region:

I* de,

. do, . :
ix
Mnwy, ~—~ = — Ry l= — To. U TE (3.14)

The ions are damped by the turbulent force of friction Rr. At the same time, the work going into the
noise excitation and hence into the turbulent electron heating is equal to

1
®RY) = srimmpes dz = Wi
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4, We consider flow part past a magnetic dipole, which creates magnetic lines of force in the flow
plane (Fig. 4). For definiteness we assume an infinitesimally thin dipole, so that the perturbations intro-
duced by it into the flow are small. We consider the flow to be in the xy plane, The flow velocity has com-
ponents vx and vy, the magnetic field correspondingly having the components Hy and Hy. We linearize the
initial system of equations (1.2) and we take account of the nonlinearity only in terms of frictional force R

{5 ) = o (e )
(5 o) e (o) 2
<_08’_ o 56‘> I <%f‘) = p;’:n (% - 3’; ) — 2k*v, (4.1)
e = g (vatloy — ot iyt e[ e (P )
e e C
We find the equations for the characteristics
E=y—ztga, tgo= (H2, + H3,)

43’[”0M1102 —— (ng + Hgy)
H, = Hy, - hy, Hy.= Hoy + by, Ve= v, + v, Vy= Uy
Here a — 0, the current is directed along the z axis,

(4.2)

We consider stationary small perturbations along the characteristics. The system of equations that
describes the distribution of magnetic field and of noise along the characteristic lines £ =y—xtg o has the
form ’

(g — hyw)[1 et W + ) ]'a= ok k*[ o

tg2 a4t Mngvg? €novo R

1n<Wk“>___ ck* (Ltgte) o (4.3)
Wo / —  2meneve tga By — Pyo)

(14 tg2a) OHy
4mengv, tga 0%,

Similarly we find the solution for the steep and gently sloping parts of the distribution of the mag-
netic~field front, For the steep part of the step we obtain the solution

0 W
hy—_—'hyoo{'l‘i‘mzv——ln( k)]

Opi, oo Wy
w 14 tga)(HZ, — H2 (*.4)
li ( K ) — tg anovevg [1 + (1 + tg? a)(Hy, — oy)] £
Wo (1 + tgz !1) Wu tgz o 41'(Mnm]02 atk¥

This solution holds for all magnetic-field gradients right up to

0hy tga 4hmengyg
98 T (14+tg2a) ¢

for which the current velocity is close to the critical value, For the gently sloping part, replacing the gas-
kinetic pressure pe=nTg by

(i -tgrap e ( oH,, .)2
Pe = 4 tg? awl; ot
we obtain the equation

(1 + tg?a) ot ( Oy )2 oy k) [ 1 (Hy, + Hy (1 - tg? d)]
AnMnove® tg® o w2, \ 0% T (Hyy + Hyjtgw) | srnoM ve? 4.5)
It gives the solution ’
¢ [ (hy — hyoo) (Hyy + Hyltga) (1 4 tg70) }/, - —tga(t —Ew) (4.6)
©pi drnoMue® — (1 - tg2oy (HE, + HE,)
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which "connects" for £ —0 with the solution for the steep part. Substituting in Eq, (4.3) the critical value
instead of the current velocity, we find the unperturbed-flow velocity v, and the critical magnetic field H,; :

-t

(H3, + H3) (4 g o) Winax (L +tg* o) (G, + H},)
Dy == ( [Wo) )[1 + ]

4anT, tga nomv In (W .o tg? adrnMVe?

“.7)

. w
o=t [+ g (5

Figure 4 shows the structure of the flow in this case. The dimension of the boundary layer in order
of magnitude equals

Al = clwy

and can prove to be considerably less than the characteristic mean free path of a particle; therefore, this
boundary layer can be called collisionless. The principal dissipation of energy and strong damping of the
flow occur near the electrode in a narrow layer in which the maximum current density is localized, In
this case there is turbulent ion damping. The energy separated during ion damping goes into turbulent
electron heating,

Thus it has been shown that for the flow of a rarefied plasma stream past magnetized bodies, for a
certain value of the flow velocity in the boundary layer a microscopic turbulence can be excited, leading
to collisionless dissipation of the energy of the flow, turbulent plasma heating, and formation of a col-
lisionless boundary layer, the dimension of which is less than the particle mean free path, However, for
a certain relation between the flow velocity and the field intensity such a flow can prove to be unstable
because of the reversing of the wave profile,
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